前言:深入理解JavaScript的执行机制,同步和异步两个主场,宏任务和微任务两个事件栈

关于 javascript

javascript是一门单线程语言,在最新的HTML5中提出了Web-Worker,但javascript是单线程这一核心仍未改变。所以一切javascript版的”多线程”都是用单线程模拟出来的,一切javascript多线程都是纸老虎!

javascript 事件循环

既然js是单线程,那就像只有一个窗口的银行,客户需要排队一个一个办理业务,同理js任务也要一个一个顺序执行。如果一个任务耗时过长,那么后一个任务也必须等着。那么问题来了,假如我们想浏览新闻,但是新闻包含的超清图片加载很慢,难道我们的网页要一直卡着直到图片完全显示出来?因此聪明的程序员将任务分为两类:

  • 同步任务

  • 异步任务

当我们打开网站时,网页的渲染过程就是一大堆同步任务,比如页面骨架和页面元素的渲染。而像加载图片音乐之类占用资源大耗时久的任务,就是异步任务。关于这部分有严格的文字定义,但本文的目的是用最小的学习成本彻底弄懂执行机制,所以我们用导图来说明:

导图要表达的内容用文字来表述的话:

同步和异步任务分别进入不同的执行”场所”,同步的进入主线程,异步的进入Event Table并注册函数。当指定的事情完成时,Event Table会将这个函数移入Event Queue。主线程内的任务执行完毕为空,会去Event Queue读取对应的函数,进入主线程执行。上述过程会不断重复,也就是常说的Event Loop(事件循环)。

我们不禁要问了,那怎么知道主线程执行栈为空啊?js引擎存在monitoring process进程,会持续不断的检查主线程执行栈是否为空,一旦为空,就会去Event Queue那里检查是否有等待被调用的函数。说了这么多文字,不如直接一段代码更直白:

1
2
3
4
5
6
7
8
9
let data = [];
$.ajax({
url:www.javascript.com,
data:data,
success:() => {
console.log('发送成功!');
}
})
console.log('代码执行结束');

上面是一段简易的ajax请求代码:

ajax进入Event-Table,注册回调函数success。执行console.log(‘代码执行结束’)。ajax事件完成,回调函数success进入Event-Queue。主线程从Event Queue读取回调函数success并执行。综上所述,我们已经对js的执行顺序有了初步了解。接下来再研究进阶话题:定时器

setTimeout:无需再多言,大家对他的第一印象就是异步可以延时执行,我们经常这么实现延时3秒执行:

1
2
3
setTimeout(() => {
console.log('延时3秒');
},3000)

渐渐的setTimeout用的地方多了,问题也出现了,有时候明明写的延时3秒,实际却5,6秒才执行函数,这可咋整啊?先来看一个粒子:

1
2
3
4
setTimeout(() => {
console.log("3秒到了!")
},3000)
sleep(10000000)//sleep代表一个需要花费很长时间的同步函数

把这段代码在chrome执行一下,却发现控制台执行 task( ) 需要的时间远远超过3秒,说好的延时三秒,为啥现在需要这么长时间啊?这时候我们需要重新理解setTimeout的定义。我们先说上述代码是怎么执行的:

1、task( )进入Event Table并注册,计时开始。

2、执行sleep函数,很慢,非常慢,计时仍在继续。

3、3秒到了,计时事件timeout完成,task( )进入Event Queue,但是sleep也太慢了吧,还没执行完,只好等着。

4、sleep终于执行完了,task( )终于从Event Queue进入了主线程执行。

上述的流程走完,我们知道setTimeout这个函数,是经过指定时间后,把要执行的任务( 本例中为task( ) )加入到Event Queue中,又因为是单线程任务要一个一个执行,如果前面的任务需要的时间太久,那么只能等着,导致真正的延迟时间远远大于3秒。我们还经常遇到 setTimeout( fn, 0 ) 这样的代码,0秒后执行又是什么意思呢?是不是可以立即执行呢?答案是不会的,setTimeout( fn, 0 )的含义是,指定某个任务在主线程最早可得的空闲时间执行,意思就是不用再等多少秒了,只要主线程执行栈内的同步任务全部执行完成,栈为空就马上执行。关于setTimeout要补充的是,即便主线程为空,0毫秒实际上也是达不到的。根据HTML的标准,最低是4毫秒。在代码的前后位置打印时间线即可得到验证。

setInterval:他俩差不多,只不过后者是循环的执行。对于执行顺序来说,setInterval会每隔指定的时间将注册的函数置入Event Queue,如果前面的任务耗时太久,那么同样需要等待。唯一需要注意的一点是,对于setInterval( fn,ms )来说,我们已经知道不是每过ms秒会执行一次 fn,而是每过ms秒,会有fn进入Event Queue。一旦setInterval的回调函数 fn 执行时间超过了延迟时间ms,那么就完全看不出来有时间间隔了。

Promise与process.nextTick(callback):接着探究Promise与process.nextTick(callback)的表现。Promise的定义和功能本文不再赘述,不了解的读者可以点击传送门学习一下阮一峰老师的Promise。而process.nextTick(callback)类似node.js版的”setTimeout”,在事件循环的下一次循环中调用 callback 回调函数。我们进入正题,除了广义的同步任务和异步任务,我们对任务有更精细的定义:

  • macro-task(宏任务):包括整体代码script,setTimeout,setInterval

  • micro-task(微任务):Promise,process.nextTick

不同类型的任务会进入对应的Event Queue,比如setTimeout和setInterval会进入相同的Event Queue。事件循环的顺序,决定js代码的执行顺序。进入整体代码(宏任务)后,开始第一次循环。接着执行所有的微任务。然后再次从宏任务开始,找到其中一个任务队列执行完毕,再执行所有的微任务。听起来有点绕,我们用文章最开始的一段代码说明:

1
2
3
4
5
6
7
8
9
setTimeout(function() {
console.log('setTimeout');
})
new Promise(function(resolve) {
console.log('promise');
}).then(function() {
console.log('then');
})
console.log('console');

这段代码作为宏任务,进入主线程。先遇到setTimeout,那么将其回调函数注册后分发到宏任务Event Queue。(注册过程与上同,下文不再描述)接下来遇到了Promise,new Promise立即执行,then函数分发到微任务Event Queue。遇到console.log(),立即执行。至此,整体代码script作为第一个宏任务执行结束,看看有哪些微任务?我们发现了then在微任务Event Queue里面,执行。ok,第一轮事件循环结束了,我们开始第二轮循环,当然要从宏任务Event Queue开始。我们发现了宏任务Event Queue中setTimeout对应的回调函数,立即执行。结束。

事件循环,宏任务,微任务的关系图

事件循环,宏任务,微任务的关系图

再来分析一段较复杂的代码,彻底剖析js的执行机制:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
console.log('1');

setTimeout(function() {
console.log('2');
process.nextTick(function() {
console.log('3');
})
new Promise(function(resolve) {
console.log('4');
resolve();
}).then(function() {
console.log('5')
})
})
process.nextTick(function() {
console.log('6');
})
new Promise(function(resolve) {
console.log('7');
resolve();
}).then(function() {
console.log('8')
})

setTimeout(function() {
console.log('9');
process.nextTick(function() {
console.log('10');
})
new Promise(function(resolve) {
console.log('11');
resolve();
}).then(function() {
console.log('12')
})
})

第一轮事件循环流程分析如下:

  • 整体script作为第一个宏任务进入主线程,遇到console.log,输出1。

  • 遇到setTimeout,其回调函数被分发到宏任务Event Queue中。我们暂且记为setTimeout1。

  • 遇到process.nextTick(),其回调函数被分发到微任务Event Queue中。我们记为process1。

  • 遇到Promise,new Promise直接执行,输出7。then被分发到微任务Event Queue中。我们记为then1。

  • 又遇到了setTimeout,其回调函数被分发到宏任务Event Queue中,我们记为setTimeout2。

宏任务 Event Queue 微任务 Event Queue
setTimeout1 process1
setTimeout2 then1

上表是第一轮事件循环宏任务结束时各Event Queue的情况,此时已经输出了1和7。我们发现了process1和then1两个微任务。

  • 执行process1,输出6。

  • 执行then1,输出8。

好了,第一轮事件循环正式结束,这一轮的结果是输出1,7,6,8。那么第二轮时间循环从setTimeout1宏任务开始:
首先输出2。接下来遇到了process.nextTick(),同样将其分发到微任务Event Queue中,记为process2。new Promise立即执行输出4,then也分发到微任务Event Queue中,记为then2。

宏任务 Event Queue 微任务 Event Queue
setTimeout2 process2
then2

第二轮事件循环宏任务结束,我们发现有process2和then2两个微任务可以执行。

  • 输出3。

  • 输出5。

  • 第二轮事件循环结束,第二轮输出2,4,3,5。

  • 第三轮事件循环开始,此时只剩setTimeout2了,执行。

  • 直接输出9。

  • 将process.nextTick()分发到微任务Event Queue中。记为process3。

  • 直接执行new Promise,输出11。

  • 将then分发到微任务Event Queue中,记为then3。

宏任务 Event Queue 微任务 Event Queue
process3
then3
  • 第三轮事件循环宏任务执行结束,执行两个微任务process3和then3。

  • 输出10。

  • 输出12。

  • 第三轮事件循环结束,第三轮输出9,11,10,12。

整段代码,共进行了三次事件循环,完整的输出为1,7,6,8,2,4,3,5,9,11,10,12。(请注意,node环境下的事件监听依赖libuv与前端环境不完全相同,输出顺序可能会有误差),综上所述,是不是跟分析题目一样简单